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Abstract

This paper describes progress to date on three prototype 
tools for detecting storage jamming attacks. One proto-
type uses a replay defense; another uses logical replica-
tion, and the third can be used to determine the source 
and pattern of a detected attack. Three prototype jam-
mers are used to test the effectiveness of the defenses. 
Initial experiments have shown that access control, 
encryption, audit, and virus detection do not prevent or 
detect storage jamming. The prototype tools have been 
effective in detecting the same attacks. Object-oriented 
data storage may require the use of application-specific 
techniques for applying checksums.

1 Introduction

Storage jamming [3] (called information warfare by 
Ammann, Jajodia, et al. [1]) is a particularly trouble-
some kind of data integrity attack. Storage jamming is 
malicious but surreptitious modification of stored data, 
to reduce its quality. The person initiating the storage 
jamming does not receive any direct benefit. Instead, 
their goal is more indirect, such as deteriorating the 
position of a competitor. We assume that a Trojan horse 
does the storage jamming, since the Trojan horse may 
run with privileges the attacker does not have. Manual 
storage jamming is possible, but in general much less 
effective.

We call values that should be stored authentic values. 
We call values stored by a jammer bogus values. We 
call the action of storing a bogus value a jam. A storage 
jamming attack diverges the state of the stored data 
from the authentic state.  The attacker expects that the 
victim will not detect the damage but will continue to 
use the damaged data. The lifetime of a storage jammer 
(how long it is able to jam and remain undetected) is a 
function of the rate and extent of its jamming, the spe-
cific user population, and the seriousness of its impact 
on the real world.

The most promising targets are systems with complex 

stored data, the authenticity of which cannot be deter-
mined by inspection. This includes legacy systems, dis-
tribution and inventory systems, distributed interactive 
simulations, data warehouses, and command and con-
trol systems. The most promising hosts for the attacking 
Trojan horses are data-creating application programs 
that do not have high assurance. All the attacker has to 
do is occasionally write a wrong, but plausible answer. 
For this reason, more conventional security techniques 
such as access control, cryptography, and intrusion 
detection are not generally useful  Since the current 
trend is toward rapidly developed special purpose 
applications based on low-cost shrink-wrapped general 
purpose software, there are many potential hosts.

McDermott and Goldschalg identified detection as the 
best defense and shown how it can be implemented [4]. 
Amman, Jajodia, et al. have developed an algorithm for 
repairing damaged data and for partial operation during 
an attack [1]. We are currently building prototypes of 
replication and replay defenses. We use our prototypes 
to investigate the basic effectiveness (or lack thereof) of 
these proposed defenses. This paper describes our 
progress to date. We have two prototypes, one for a 
replay defense and one for a replication defense.

2 Target System

We chose Windows NT (running on IBM PC compati-
ble hardware) as the underlying operating system for 
several reasons. Windows NT is a modern operating 
system that has a rich set of security features, and good 
built-in audit tools. The relatively low assurance of 
these features is of no consequence, because our exam-
ple storage jamming attacks do not challenge access 
control, audit, or authentication features. Windows NT 
running on PC hardware is relatively low cost, which is 
good for prototypes. Finally, some of our sponsors are 
interested in using Windows NT, so the specific results 
are of interest as well.

Because of its access control features, we limited our 



target system to the NTFS file system, there are no 
DOS (i.e. FAT) or OS/2 (i.e. HPFS) partitions. We 
enabled most of the C2 security features [2], omitting 
those that have no bearing on storage jamming attacks 
(e.g. the boot time-out value was not set to zero). Per-
missions on the %systemroot% directory were set so 
that no one but administrators could change the direc-
tory or its contents. Specific files in %systemroot% that 
applications needed to write were then reset to allow 
write or change access, to those files only. 

We tried a range of audit settings, all the way up to 
maximum auditing on the target files. Every file and 
subfolder of the target folder was set for audit of read, 
write, execute, delete, change permissions, and take 
ownership. The log manager was configured not to 
overwrite security log entries but to halt the system if 
the security log became full.

We also tried two commercial off-the-shelf virus detec-
tion packages, running in their maximum search set-
tings (e.g. cryptographic checksums based on all bytes 
of a file). We do not identify the packages in this paper 
because their failure to detect jamming does not dimin-
ish their value as security tools, when used as intended.

2.1 Target Applications

We chose two applications for jamming attacks: 
Microsoft Access and Microsoft SQL Server. 

Our first target application was Microsoft Access. This 
is an inexpensive database system that has both access 
control and the capability to encrypt its stored data. 
This allowed us to demonstrate that storage encryption 
per se is not a general defense against storage jamming 
attacks. The discretionary access control in this data-
base system is equivalent to access control lists, i.e. 
specific permissions can be set for individual named 
objects, on a per user basis.

The specific application is an in-flight refueling data-
base inspired by Ammann, Jajodia, et al. [1]. It is a toy 
application with 13 tables, 4 pre-defined queries, and 
one form. Figure 1 shows the base table Tankers from 
the database. Tankers records information about the 
assignment of tankers to refueling missions. The aver-
age amount of data in the database is a few thousand 
small records. This makes it easy to inspect the integrity 
of the stored data.

Figure 1. Base table Tankers from the target database

We experimented with a range of security policies for 
our database. Passwords were assigned to individual 
users and permissions were set for specific named 
objects. In the most extreme policy, user mcdermott 
was only given read permission for the database form 
Refueling and all other users were given no access. 
(This strongest policy would probably not be usable in 
a practical system but was useful in testing the limits of 
jamming and access control). In all policies, the data-
base was encrypted using the built-in security wizard. 

Our second target application is Microsoft SQL Server, 
a full-featured database system. It uses discretionary 
access control on objects as fine as individual attributes, 
on a per-user or per-group basis. SQL Server also uti-
lizes the underlying access control and audit features of 
the Windows NT operating system. We performed the 
same series of experiments against SQL Server, with 
the exception of those related to encryption.



3 The Defensive Prototypes

Our prototyping included three defenses: Doc, Wyatt, 
and Virgil. Each prototype exists in several versions, 
depending on the features we are exploring. 

3.1 Doc

The Doc prototype is an architecture-independent 
defense that replays command sequences in order to 
detect surreptitious attacks originating from a single 
application. Doc records sequences of user keystrokes 
and later replays them, checking that the results of the 
replay are the same as the results for the original input 
sequence. The recorded sequences are stored in scripts 
that include steps where the state of the stored data is 
checked against the correct state. The script results are 
based on an initial state that must be recorded with the 
script. Our initial Doc prototype uses two kinds of 
scripts: statistical scripts and syntactic scripts. Statisti-
cal scripts are based on typical usage of the protected 
application. Statistical scripts contain sequences of 
commands that appear most frequently, with the most 
commonly used parameters. Syntactic scripts are based 
upon language generators that are specified by a gram-
mar. The grammar specifies a legal set of commands or 
input values that we wish to deny the jammer.

The state of the stored data is recorded as a cumulative 
CRC-32 check value. We chose a simple, non-crypto-
graphic check value because the check value is not 
stored with the corresponding detection objects but in 
an encrypted file. We also chose a simple, non-crypto-
graphic check because the CRC-32 check value calcu-
lation is fast. We also want to minimize the storage 
required for check values.

The defensive principle used in Doc is trigger denial. 
The problem of detecting all jammers by replay is simi-
lar to the problem of exhaustive testing. Our alternative 
is to deny potential jammers the use of the most fre-
quently occurring trigger conditions, the principle of 
trigger denial. So instead of saying that the Doc proto-
type stops all jammers, we say that there is no jammer 
present that uses the trigger conditions exercised by 
Doc, with further restrictions discussed below. We call 
a set of triggers that cannot be used (because of replay) 
a denial set. We can design specific denial sets by 
choosing appropriate replay scripts. In our initial exper-
iments, we use regular sets to analyze the denial set of a 
script.

An example will clarify. Suppose we wish to protect the 
relation Tankers from attacks that are triggered by val-
ues of the attribute Tankers.PlannedFuel. (By this we 
do not mean that a value triggers the attack, but that the 

decision to jam is conditioned on values of Tank-
ers.PlannedFuel.) Suppose we know, from statistical 
analysis our application, that the values of Tank-
ers.PlannedFuel range between 5000 and 30000. We 
use Doc to record sequences of commands from fre-
quently occurring tasks (obtained from statistical analy-
sis of the application), so that the most frequent events. 
For this example, suppose we include four events: 
OpenWindow, ResizeWindow, GetFocus, and CloseWin-
dow. This initial script is a statistical script. Then we 
modify the script by adding a syntactic generator that 
causes the script to insert all values between 5000 and 
30000 into Tankers.PlannedFuel. We now have a script 
that will detect any attack that is triggered by the events 
OpenWindow, ResizeWindow, GetFocus, CloseWindow 
or update to Tankers.PlannedFuel, and conditioned on a 
value for Tankers.PlannedFuel between 5000 and 
30000. Jammers that wish to remain undetected will 
have to use a trigger that does not use the frequently 
occurring events and is not conditioned on the value of 
Tankers.PlannedFuel. This latter kind of restriction can 
be troublesome for the jammer, since it runs the risk of 
inserting implausible values if it does not check the cur-
rent data. 

The Doc prototype checks all NTFS permanent storage 
objects (i.e. files and folders) that are accessible to the 
application being checked. This will detect jammers 
that change files or folders not currently opened by the 
application. For example, a jammer hosted in Microsoft 
Access may target xls (i.e. spreadsheet) files in the cur-
rent user’s folder, so a check of the currently open mdb 
(i.e. database) file is not enough. On the other hand, for 
performance and security reasons, we do not plan to use 
Doc in a mode that allows us to detect bogus changes to 
any data stored on a system. So we only detect jammers 
that do not break access control or encryption. 

The scripts, initial state, and check values of the Doc 
prototype can be stored on removable media (e.g. 
Iomega JAZ drive). This allows us to increase the size 
and variety of the scripts that can be used. The remov-
able nature of these drives and their built-in read/write 
protection has the benefit of complicating matters for 
Trojan horses that may try to search for or tamper with 
the scripts. The final version of Doc will be designed to 
run from the removable media, so no image of the Doc 
system will be on fixed storage. We are also experi-
menting with encryption for the scripts and code, to 
guard against tampering.

Doc has a graphical user interface, but also works with 
command lines. The graphical user interface allows the 
user to name a script, specify the target directory that 
defines the environment for a replay, or to chose a script 



to replay. 

Doc’s output includes a visible alarm and the recording 
of an event in the security log of the target machine.

Doc is designed to allow the creation of scripts based 
on recorded command sequences. This enhances the 
indistinguishability [4] of the detection replays and is 
much easier to use. Doc includes a script editor that 
allows a Doc user to insert commands into previously 
recorded sequence of user interface commands. The 
inserted commands can build a script that inserts a 
range of data values into a table.

Doc’s script language allows full manipulation of key-
board and mouse commands.  The keyboard commands 
duplicate keystrokes in the order that they are to be 
replayed.  Pressing the key and releasing are considered 
to be two separate actions.  The number of milliseconds 
to wait before the next action can also be specified (if 
not specified, a default value will be used).

Mouse movements specify the row and column on 
which the mouse cursor is to be placed, as well as the 
time delay before the next action. Right, middle, and 
left mouse buttons can be double-clicked, pressed and 
released.

The following shows a sample of a Doc script:

LBUTTONDOWN 96 CB DELAY=94
LBUTTONUP 96 CB DELAY=0
STRING TEST
KEYDOWN <RIGHTSHIFT> DELAY=656
KEYDOWN 3 DELAY=203
KEYUP 3 DELAY=109
KEYUP <RIGHTSHIFT>DELAY=172
FIELD ###
KEYDOWN <RETURN> DELAY=562
KEYUP <RETURN> DELAY=63
MOUSEMOVE 96 C9 DELAY=5187
MOUSEMOVE 99 CA DELAY=16
MOUSEMOVE 9E D0 DELAY=31
MOUSEMOVE AC D6 DELAY=16
MOUSEMOVE BC E4 DELAY=15
LBUTTONDOWNBC E4 DELAY=297
LBUTTONUP BC E4 DELAY=125

There are several areas of note.  The STRING command 
breaks the text output into KEYDOWN and KEYUP 
sequences.  Thus:

STRING TEST

Breaks out into:

KEYDOWNT DELAY=63
KEYUP T DELAY=63
KEYDOWNE DELAY=63

KEYUP E DELAY=63
KEYDOWNS DELAY=63
KEYUP S DELAY=63
KEYDOWNT DELAY=63
KEYUP T DELAY=63

where 63 milliseconds is the default delay time. 

The FIELD command allows for strings of text that 
change with each replay of the script.  This gives the 
ability to test for certain trigger values, as well as make 
it more difficult for the virus to detect our scanning.

Like the STRING command, the FIELD command is 
disseminated into the following:

FIELDCHAR # 1
FIELDCHAR # 1
FIELDCHAR # 1
FIELDACTIVATE 1

FIELDCHAR contains part of a sequential chain of val-
ues that ultimately are recreated into the field template 
(The # character specifies a digit from 0-9).  FIELDAC-
TIVATE is used increment the field and output the 
appropriate KEYUP and KEYDOWN commands.

Using the preceding script and replaying it 3 times, the 
output would be:

TEST:0
TEST:1
TEST:2

By using three # characters, we tell Doc to output 
sequentially, incrementing digits from 0 to 999.  If more 
then 1000 iterations are used, we roll back to 0.

3.2 Wyatt

The Wyatt prototype is a replication-based defensive 
tool. Wyatt is designed to use logical replication as a 
defense. Replication in general is problematic. Under 
many approaches, bogus data can be replicated auto-
matically and precisely to many locations. However 
replication works as a defense if we use logical replica-
tion over distinct application systems. Many replication 
algorithms copy data values from the source data item 
to its replicas. However, logical replication copies the 
command that caused the source data item to change. 
The command is executed at each replica’s site and, 
because of one-copy serializability, results in the same 
new value for the replica. If we assume a distinct prove-
nance for the application system at each site, then a 
would-be attacker must install distinct (i.e. site-spe-
cific) cooperating Trojan horses at each site. The proto-
type can achieve higher assurance by increasing the 
distinction in provenance. The most distinction would 



be a completely heterogeneous set of sites, with soft-
ware from different vendors, purchased via blind 
buys.Assuming the would-be attacker can insert set of 
distinct Trojan horses is not enough; the Trojan horses 
must be implemented to insert bogus data in one-copy 
serializable fashion. In an architecture that prevents 
unauthorized communication between sites, this will 
require the attacker to use stateless jammers. Stateless 
jammers are less effective because the rate and extent of 
their jamming is less predictable, because it is entirely 
dependent on user input. For the same reason, it will be 
easy for a victim to reproduce the effects of a stateless 
jammer and locate it.

The Wyatt prototype can detect stateless cooperating 
Trojan horses at n-1 sites, if there are n replication sites. 
In cases where the Trojan horses are not stateless, it 
may even detect the presence of n cooperating Trojan 
horses at n sites, because their serializability may fail. 
In either case, replication is a more effective defense 
than the more general replay approach. There are two 
reasons why a replicated defense is more effective. 
First, a replication defense over n sites can deny all trig-
gers at n-1 sites. Second, the replicas can be used for 
damage assessment and for continued operation during 
and after a storage jamming attack.

Detection is simple in the Wyatt prototype. There is a 

detection process at each source or replica site. Follow-
ing changes to protected data, the process at the source 
site computes a checksum and sends it to each replica 
site, along with the identification of the change. After 
the logical update is performed at a replica site, the 
detection process at the replica site computes its own 
checksum and compares it to the checksum transmitted 
by the source site detection process. If there is disagree-
ment, there is a problem. 

An example will clarify. Suppose we have replicated 
our target refueling database at two sites East and West, 
with the primary copy at site West (see Figure 2). 
Authentic changes to the Tankers relation are replicated 
to site East by logical replication. So if Tankers is 
changed at site West by the SQL command

UPDATE Tankers SET type = ‘K21’, 
yr = ‘4’, serial = ‘77’ WHERE 
mission = ‘Coke’ AND slot = 3, 

then this command is sent to site East and run against 
the copy of the Tankers relation at East. Wyatt will 
compute a checksum cw at West and send it to site East; 

at East, the local copy of Wyatt will compute its own 
checksum ce and compare the two. In this case, they 

will agree because of the one-copy serializability of the 
replication mechanism. 

Figure 2. The Wyatt Prototype

Now suppose we have a jammer running at site West 
that reduces Tankers.PlannedFuel by 10% for a single 
tuple, each time a read-only form named Refueling is 
opened at site West. If the form is opened, then the 
Tankers relation is changed at West, but not at East. On 

the next authentic update, the checksum cw sent to East 

by Wyatt will not agree with local checksum ce com-

puted by Wyatt at East. See Figure 3 below.

UPDATE Tankers
SET type = ‘K21’, yr = ‘4’, serial = ‘77’
WHERE mission = ‘Coke’ and slot = 3

cw = 0x34d2f

ce = 0x34d2fcw = 0x34d2f

ce = cw?

Site East Refueling DatabaseSite West Refueling Database

Wyatt
prototype
at East

Wyatt
prototype
at West



Figure 3. Wyatt Detecting the Ike Jammer

The Wyatt prototype can also protect applications that 
do not have logical replication built in. It protects appli-
cations that cannot replicate appropriately by recording 
the inputs and replaying them at the replica sites. If the 
context for the recorded commands is replicated at the 
each site, then replaying the commands will update or 
create new data that is logically identical at each site. 
We have already done some testing of this for Microsoft 
Word. In the case of database systems, this form of repl-
ciation may be preferable to any built-in replication [5]. 
This is because database replication by itself may not 
catch bogus values introduced by Trojan horses in pro-
grams such as middleware or window managers.

3.3 Virgil

The Virgil prototype is a data file checker. Virgil is a 
tool that can pinpoint an attack detected by Doc. Virgil 
uses complex check value structures that can identify 
the specific file or folder that was corrupted, and the 
time of the unauthorized change. These more precise 
check values require a significant amount of storage 
and slow down the checking, so we do not use them in 
the initial detection process.

The Virgil prototype can also be used to watch portions 
of a file system. Unlike virus protection software, the 
Virgil prototype checks arbitrary file types. Virgil also 
uses logical checksums (see below), so it does not 
detect changes that do not matter. It also runs entirely 
from removable media, with its executable code and 
check values stored outside the normal file system. This 
makes it more tamper-proof than a system based on a 
fixed drive.

4 The Prototype Jammers

Our prototype jammers included Ike, Curly Bill, and 
Ringo. We consider them prototypes because they were 
not designed for “use” as actual Trojan horses. We 
expended minimal effort on making them either robust 
or hard to find. Instead, they were designed to be easy 
to modify for experimentation. We assume that it is 
possible to build robust, hard to find Trojan horses. 
However, proving this is outside the scope of our work.

We omit details on the construction of our prototype 
jammers for obvious reasons.

4.1 Ike

Ike is a stored-procedure Trojan horse. The first Ike 
prototype was coded in Visual Basic for Access and 
attached to various events or properties within likely 
Access objects. Ike was designed to apply SQL to select 
targets for attack, for example:

SELECT * FROM Tankers WHERE 
PlannedFuel BETWEEN 10000 AND 
20000

If the query returns enough data, the target is consid-
ered large enough to jam. Ike then jams random targets 
chosen from a fixed fraction of the tuples. Bogus values 
are generated by simple arithmetic operations applied 
to the valid data. This makes it easy for us to detect the 
effects of various experiments.

We were pleased to find that the internal access controls 
of the Access database system apparently prevent naïve 
jamming across their boundaries. Attempts to insert 
bogus values into objects the current user could not 
modify were prevented. For example, if we restricted 
user mcdermott to just read access on the table Tankers, 

UPDATE Tankers
SET type = ‘K21’, yr = ‘4’, serial = ‘77’
WHERE mission = ‘Coke’ and slot = 3

cw = 0x47f0a

ce = 0x34d2fcw = 0x47f0a

ce = cw?

Site East Refueling DatabaseSite West Refueling Database

Wyatt
prototype
at East

Wyatt
prototype
at West

Ike jammer

bogus
values



then Ike was unable to modify it when run by user 
mcdermott.

However, the main point of this is that access control is 
not generally effective. As discussed below, we were 
able to jam any data that our user had privileges to 
modify. 

4.2 Curly Bill

Curly Bill is a Trojan horse Java front end program that 
attacks database files. Curly Bill is not used to experi-
ment with Java security per se, but to investigate jam-
ming via front end software, where the source of the 
jamming is outside the application being jammed. The 
approach used in Curly Bill is similar to Ike. First, a 
potential target is queried to see if its contents are large 
enough to make detection unlikely. Then random tar-
gets are chosen from a fixed fraction of the tuples and 
bogus values are generated by simple arithmetic opera-
tions applied to the valid data.

4.3 Ringo

Ringo is a sophisticated low-level Trojan horse attached 
to Access. Its main use is to investigate the effective-
ness of our defensive prototypes against low-level 
attacks. Ringo has a separate “user” interface and is 
designed to display and record extensive debugging 
information about its own actions. Ringo uses a naive 
jamming strategy of randomly swapping values of a 
randomly selected attribute.

5 Initial Experiments

Our first round of experiments tested the Doc prototype 
against the first Ike jammer. The access controls were 
able to prevent Ike from jamming data, when the user 
running Ike did not have write access to the data (hence 
forth called a read-only user). We did not experiment 
with bypassing the controls, other than to run Ike as a 

read-only user. We did this to confirm that the access 
controls did appear to work. We did notice that 
Microsoft Access did not alert the read-only user to 
failed attempts to modify a protected object. This lack 
of notification makes Trojan horse attacks simpler, 
since an attack does not have to catch and mask excep-
tions from the user.

The use of database encryption made no difference to 
the first Ike jammer. This was not surprising to us, since 
Ike operates from within the database and has access to 
the plaintext data.

When the user did have write access to stored data, we 
were able to jam it, even when the jammer was associ-
ated with a read-only object (e.g. a form defined on a 
multiple table view). In the case of a stored procedure 
triggered from within a read-only object, it was possible 
to jam writeable objects stored in the same database. 
Once again, Access failed to notify the user that records 
were being modified, so there was no need to catch 
these notifications and discard them before the user 
could see them. This would be a case of jamming from 
within the GUI of an application.

The audit records generated by these initial experiments 
were not useful in detecting the attacks. As Figure 4 
shows, the audit records are too coarse in granularity. In 
the case of SQL server, the necessary information must 
be available for recovery and for replication, but it is 
not available through the tools that are provided with 
SQL Server. Even if tuple-by-tuple information was 
available, it would be very difficult to locate a few 
bogus changes among the hundreds of authentic modi-
fications. Furthermore, garbage collection of the logs 
might remove the needed records before they could be 
examined. SQL Server does provide users a notification 
that records were modified, so an attacker must include 
logic to mask out these notifications. 



Figure 4. An Audit Record Generated By a Storage Jamming Attack

The Doc prototype did successfully detect every jam-
ming attempt made by the Ike and Curly Bill jammers. 
We detected direct attacks, where the Ike prototype 
made bogus changes to data underlying its host object 
and jamming attacks from read-only objects, where the 
bogus changes were made to tables not currently open. 
In its present form, the Doc prototype cannot pinpoint 
the unauthorized changes more finely than individual 
tables. Even table-level damage location requires a 
complex checksum calculation that creates tension 
between performance and precision. As checksum com-
plexity increases, we can locate damage more precisely, 
but the time and space needed to perform a check 
increases too. At present the best approach appears to 
be to use two scripts, a search script with simple check-
sums and a location script with complex checksums. 
The location script is run when a previous search indi-
cates possible storage jamming.

Our initial tests for the Wyatt prototype have detected 
jamming in Microsoft Word, via the playback scheme 
we described earlier. Further tests and development of 
the Wyatt prototype for Microsoft SQL Sever are cur-
rently ongoing. 

5.1 Checksumming the Representation of 
Objects

We encountered an interesting factor when we began to 
develop the Doc prototype. The kind of checksums we 
needed were not the same as we would need to prevent 
tampering with a valid original. We want a bit-wise 
checksum to show that an original is unchanged. Jam-
ming works by creating originals that contain small 
amounts of incorrect data, so what we need is a check-
sum that shows the equivalence of two instances of the 
same data.

Modern object-oriented software, i.e. software that uses 
objects to store data, will change the representation of 
an object when the abstract (logical) stored values have 
not changed at all. There are at least two reasons why 
this can happen. First, object-oriented applications are 
usually designed to save state information about their 
presentation (e.g. window position) and about their last 
context (e.g. files open for editing). Any changes to this 
are recorded, even though the user’s stored data has not 
changed, just its display and context. Second, objects 
that store large amounts of data usually organize the 

4/23/972:24:48 PM Security Success Audit Object Access 560********WAL-
LACE
Object Open:
Object Server:Security
Object Type:File
Object Name: C:\users\mcdermott\spoofing\testing\ikeS.mdb
New Handle ID:192
Operation ID:{0,7495737}
Process ID:2152207776
Primary User Name:*********
Primary Domain:WALLACE
Primary Logon ID:*********
Client User Name:-
Client Domain:-
Client Logon ID:-
Accesses:
  READ_CONTROL 

  SYNCHRONIZE 
  ReadData (or ListDirectory) 
  WriteData (or AddFile) 
  AppendData (or AddSubdirectory or CreatePipeInstance) 
  ReadEA 
  WriteEA 
  ReadAttributes 
  WriteAttributes 

Privileges:-



representation of the data according to complex internal 
structures such as B trees. Optimization of these struc-
tures may cause two equal (but not identical) instances 
of an object class to have different internal data struc-
tures, and hence different checksums for the same 
abstract values. 

If the application to be protected has this characteristic, 
then we must use abstract checksums to compare the 
state of the stored data. Abstract checksums are com-
puted over just the values stored by an object, instead of 
the bits that currently represent the object. For example, 
in checking our database prototypes, we computed 
checksums over the tuples stored in each table. If crc() 
denotes our checksum function then we compute 
crc(SELECT * FROM Tankers) instead of 
crc(Tankers.mdb). Readers familiar with relational 
database systems will notice that even this command 
may not be enough, we may need crc(SELECT DIS-
TINCT mission, fuel, type, serial 
FROM Tankers order by mission, fuel, 
type, serial). Abstract checksums are often easy 
to compute, but they are application specific. For this 
reason, we may have to develop an abstract checksum 
class or package for each application we want to pro-
tect. This problem is not unique to database systems. 
We also encountered this in our first experiments with 
Microsoft Word.

6 Conclusions

Our prototypes have demonstrated the feasibility of 
detecting storage jamming by either replay or by repli-
cation. Defense via replication is preferable, because 
replication can deny a much larger set of triggers. Rep-
lication can also be used for continued operation and 
damage assessment. However, it is not necessary to rep-
licate data to be able to detect storage jamming. The 
replay defense will work in any architecture, and can be 
used to provide a reasonable measure of protection.

Design and programming of these prototypes was com-
plicated by the fact that the target systems are not 
open.Generation, transmission, and handling of low-
level events by these black boxes is not uniform. Most 
of the licenses supplied with the software prohibit dis-
sassembly, which further complicates the process of 

understanding the interactions between the application 
and the operating system. Care must be taken to ensure 
that the scripts used in the replay defense are indistin-
guishable from real user input.

Our experience so far is that both replication and replay 
defense tools must be application specific. Checksums 
used to compare stored values must be logical check-
sums. Efficient computation of these is not only appli-
cation specific, but suffers from the problems of closed 
design mentioned above. In many cases, we expect that 
either replay or replication will require detailed logic to 
deal with application specific commands. We conjec-
ture that this difficulty is fundamental to the nature of 
storage jamming, because data storage is application 
specific (if we include general purpose database sys-
tems in our definition of applications).

Our future plans are to continue prototyping to investi-
gate two more issues we have not looked at: 1) replay 
and replication of network input, and 2) the impact of 
application specifics in an operational system.
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